Question	Sc	heme	Marks	AOs
1 (a)	$\log_{10} h = 2.25 - 0.235 \log_{10} m$ $\Rightarrow h = 10^{2.25 - 0.235 \log_{10} m}$ $\Rightarrow h = 10^{2.25} \times m^{-0.235}$	$h = pm^{q}$ $\Rightarrow \log_{10} h = \log_{10} p + \log_{10} m^{q}$ $\Rightarrow \log_{10} h = \log_{10} p + q \log_{10} m$	M1	<mark>1.1b</mark>
	Either one of $p = 10^{2.25}$ $q = -0.235$	Or either one of $\log_{10} p = 2.25 \ q = -0.235$	A1	1.1b
	$\Rightarrow p = 178$	and $q = -0.235$	A1	<mark>2.2a</mark>
			(3)	
(b)	$h = "178" \times 5^{"-0.235"}$	$\log_{10} h = "2.25" - "0.235" \log_{10} 5$	M1	3.1b
	h=122	h=122	A1	1.1b
	Reasonably accurate (to 2 s	f) so suitable	Alft	3.2b
(a)	""" would be the (nesting	a) haant note (in hanne) of a	(3)	
(c)	mammal with a mass o	ng) heart rate (in bpm) of a f 1 kg	B1	3.4
			(1)	
			(7	marks)
May be A1: For a co	shes a link between $h = pm^{q}$ and e implied by a correct equation in prrect equation in p or q and $q = -0.235$	10 10		
M1: Uses ei	ther model to set up an equation	in <i>h</i> (or <i>m</i>)		
A1: $h = awr$	t 122. Condone <i>h</i> = awrt 122 bpn	n		
A1ft: Comm	nents on the suitability of the mo	del. Follow through on their answer.		
Require	s a comment consistent with the	r answer from using the model.		
Do It i	s a suitable model as it is only "3 o not allow an argument stating t s an unsuitable model as "122" b			
(c) B1: " <i>p</i> " wo	ould be the (resting) heart rate of	a mammal with a mass of 1 kg		

Question	Scheme	Marks	AOs
2 (a)	Uses or implies that $V = ad + b$	B1	3.3
	Uses both $40 = 80a + b$ and $25 = 200a + b$ to get either a or b	M1	3.1b
	Uses both $40 = 80a + b$ and $25 = 200a + b$ to get both a and b	dM1	1.1b
	$\Rightarrow V = -\frac{1}{8}d + 50 \text{ o.e.}$	A1	1.1b
		(4)	
(b)(i)(ii)	States either that the initial volume was 50 {litres} or that the distance travelled was 400 {km}	B1 ft	3.4
	Attempts to find both answers by solving $0 = -\frac{1}{8}d + 50$ and $0 = 400 - 8V$	M1	3.4
	States both that the initial volume was 50 litres and that the distance travelled was 400 km	A1	3.2b
		(3)	
(c)	States, e.g., "Poor model" as 320km is significantly less than 400 km.	B1ft	3.5a
		(1)	
(a) B1: Att	empts a linear model, i.e., uses or implies that $V = ad + b$ or $d = mV + c$ erms of, e.g., v and x	(8 n	narks) ny be
in t M1: Aw It is pro Alt can Yo for dM1: Use Alt the	erms of, e.g., y and x varded for translating the problem in context and starting to solve. As scored when both $40 = 80a + b$ and $25 = 200a + b$ are written down and ceeds to find either a or b ernatively, scored when both $200 = 25m + c$ and $80 = 40m + c$ are written didate proceeds to find either m or c a may just see $\pm \frac{25-40}{200-80}$ or $\pm \frac{200-80}{25-40}$ or 8km for every litre o.e. so attempts at the gradient. es $40 = 80a + b$ and $25 = 200a + b$ to find both a and b (or m and c) ernatively, if the gradient is found, proceeds to use one of the bullet points usual rules applying for straight line (coordinates must be used the correct	(8 m which ma d the candi n down and o check ca	y be date d the refully with
 (a) B1: Att in t M1: Aw It is pro Alt can Yo for dM1: Use Alt the i.e. A1: V = 	erms of, e.g., y and x varded for translating the problem in context and starting to solve. As scored when both $40 = 80a + b$ and $25 = 200a + b$ are written down and ceeds to find either a or b ernatively, scored when both $200 = 25m + c$ and $80 = 40m + c$ are written didate proceeds to find either m or c u may just see $\pm \frac{25-40}{200-80}$ or $\pm \frac{200-80}{25-40}$ or 8km for every litre o.e. so attempts at the gradient. es $40 = 80a + b$ and $25 = 200a + b$ to find both a and b (or m and c) ernatively, if the gradient is found, proceeds to use one of the bullet points	(8 m which ma d the candi n down and o check ca s to find <i>c</i> , t way rour	y be date d the refully with
 (a) B1: Att in t M1: Aw It is prodiced and the prodiced and the product an	erms of, e.g., y and x arded for translating the problem in context and starting to solve. a scored when both $40 = 80a + b$ and $25 = 200a + b$ are written down and ceeds to find either a or b ernatively, scored when both $200 = 25m + c$ and $80 = 40m + c$ are written didate proceeds to find either m or c u may just see $\pm \frac{25-40}{200-80}$ or $\pm \frac{200-80}{25-40}$ or 8km for every litre o.e. so attempts at the gradient. es $40 = 80a + b$ and $25 = 200a + b$ to find both a and b (or m and c) ernatively, if the gradient is found, proceeds to use one of the bullet points usual rules applying for straight line (coordinates must be used the correct o, they would lead to the correct answer). $= -\frac{1}{8}d + 50$ or exact equivalent, e.g., $d = 400-8V$ or $d+8V = 400$ etc	(8 m which ma d the candi n down and o check ca s to find <i>c</i> , t way rour c.	y be date d the refully with nd,
 (a) B1: Att in t M1: Aw It is pro Alt can Yo for dM1: Use Alt the i.e. A1: V = Wi Mark par B1ft: Sta mu 	erms of, e.g., y and x araded for translating the problem in context and starting to solve. as scored when both $40 = 80a + b$ and $25 = 200a + b$ are written down and ceeds to find either a or b ernatively, scored when both $200 = 25m + c$ and $80 = 40m + c$ are written didate proceeds to find either m or c a may just see $\pm \frac{25-40}{200-80}$ or $\pm \frac{200-80}{25-40}$ or 8km for every litre o.e. so attempts at the gradient. es $40 = 80a + b$ and $25 = 200a + b$ to find both a and b (or m and c) ernatively, if the gradient is found, proceeds to use one of the bullet points usual rules applying for straight line (coordinates must be used the correct they would lead to the correct answer). $= -\frac{1}{8}d + 50$ or exact equivalent, e.g., $d = 400-8V$ or $d + 8V = 400$ etce thhold this mark if their answer is not stated in terms of V and d tes (b)(i) and (b)(ii) together. Note that they may restart and not use and tes either the initial volume was 50 {litres} or the distance travelled was 40	(8 m which mains of the candidate of th	ay be adate d the refully with ad, n. but it

-	
	Substitutes $V = 0$ and finds <i>d</i> by attempting to solve their $0 = -\frac{1}{8}d + 50$
	and substitutes $d = 0$ and finds V by attempting to solve their $0 = 400 - 8V$
	Note that one (or both) of these attempts may be implied by correct values ft their equations.
A1:	States both 50 litres and 400 km. Units are required to be correct for both values.
	It must be clear which answer applies to each part, which may be simply by correct units.
	Accept <i>l</i> or <i>L</i> for litres.
(c)	
B1ft:	Main Scheme (comparing (b)(ii) with 320)
	This mark is only available for answers from (b)(ii) if they are < 290 or > 350
	Concludes poor model (o.e.) and states that 320 is significantly less than "400" (o.e.)
	Note that $320 \ll 400$ so it is a poor model is acceptable.
	It is not sufficient to say $320 \neq 400$ or $320 < 400$ so it is a poor model.
	Condone "the 400 is too far away from 320".
	Alternative (finding remaining fuel after 320 km)
	States poor model (o.e.) because after 320 km the model predicts there will be 10 litres left,
	which is significantly more than an empty tank / much too high compared to an empty tank
	(o.e.).

Quest	tion Scheme	Marks	AOs
3 (a)	$h = 2.3 - 1.7 e^0$	M1	3.4
	Either 0.6 {m} or 60 cm	A1	1.1b
		(2)	
(b	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t}\right\} = \left\} 0.34 \mathrm{e}^{-0.2t}$	M1	3.1b
	At $t = 4 \Rightarrow$ Rate of growth is $0.34e^{-0.2 \times 4} = 0.15277\{m / year\}$	dM1	3.4
	0.153 {m per year} = 15.3 cm {per year} *	A1*	1.1b
		(3)	
(c)	2.3 (m)	B1	2.2a
		(1)	
		(6 r	narks)
Notes (a) M1:	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or	<i>h</i> =0.6	
(a) M1: A1:		h=0.6	
(a) M1: A1: (b)	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or Allow 0.6, 0.6 m, or 60 cm and isw after a correct height. Allow $\frac{3}{5}$ The M mark may be implied by A1.		7
(a) M1: A1: (b)	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or Allow 0.6, 0.6 m, or 60 cm and isw after a correct height. Allow $\frac{3}{5}$ The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $k = 1.5e^{-0.2t}$		7
(a) M1: A1: (b) M1:	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or Allow 0.6, 0.6 m, or 60 cm and isw after a correct height. Allow $\frac{3}{5}$ The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $k \in$ Accept, e.g., $-0.2 \times -1.7e^{-0.2t}$ Must be seen in (b).		7
(a) M1: A1:	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or Allow 0.6, 0.6 m, or 60 cm and isw after a correct height. Allow $\frac{3}{5}$ The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $k = 1.5e^{-0.2t}$		7
(a) M1: A1: (b) M1: dM1:	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or Allow 0.6, 0.6 m, or 60 cm and isw after a correct height. Allow $\frac{3}{5}$ The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $k \in$ Accept, e.g., $-0.2 \times -1.7e^{-0.2t}$ Must be seen in (b). Substitutes $t = 4$ into $k e^{-0.2t}$, $k \neq -1.7$ and calculates its value.	$e^{-0.2t}, k \neq -1$	
(a) M1: A1: (b) M1: dM1:	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or Allow 0.6, 0.6 m, or 60 cm and isw after a correct height. Allow $\frac{3}{5}$ The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $k = 4$ Accept, e.g., $-0.2 \times -1.7e^{-0.2t}$ Must be seen in (b). Substitutes $t = 4$ into $k e^{-0.2t}$, $k \neq -1.7$ and calculates its value. Fully correct. Requires	$e^{-0.2t}, k \neq -1$	
(a) M1: A1: (b) M1: dM1:	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or Allow 0.6, 0.6 m, or 60 cm and isw after a correct height. Allow $\frac{3}{5}$ The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $k = 4$. Accept, e.g., $-0.2 \times -1.7e^{-0.2t}$ Must be seen in (b). Substitutes $t = 4$ into $k = e^{-0.2t}$, $k \neq -1.7$ and calculates its value. Fully correct. Requires • sight of $\left\{\frac{dh}{dt} = \right\} 0.34e^{-0.2t}$ o.e., e.g., $\left\{\frac{dh}{dt} = \right\} \frac{17}{50}e^{-0.2t}$ or $\left\{\frac{dh}{dt} = \right\}$ • $\left\{\frac{dh}{dt} = \right\}$ awrt 0.153 {metres per year} • changing to awrt 15.3 cm {per year}.	$e^{-0.2t}, k \neq -1$	
(a) M1: A1: (b) M1: dM1:	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or Allow 0.6, 0.6 m, or 60 cm and isw after a correct height. Allow $\frac{3}{5}$ The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $k = 4$. Accept, e.g., $-0.2 \times -1.7e^{-0.2t}$ Must be seen in (b). Substitutes $t = 4$ into $k = e^{-0.2t}$, $k \neq -1.7$ and calculates its value. Fully correct. Requires • sight of $\left\{\frac{dh}{dt} = \right\} 0.34e^{-0.2t}$ o.e., e.g., $\left\{\frac{dh}{dt} = \right\} \frac{17}{50}e^{-0.2t}$ or $\left\{\frac{dh}{dt} = \right\}$ • $\left\{\frac{dh}{dt} = \right\}$ awrt 0.153 {metres per year} • changing to awrt 15.3 cm {per year}.	$e^{-0.2t}, k \neq -1$	
(a) M1: A1: (b) M1: dM1: A1*:	Substitutes $t = 0$ into $h = 2.3 - 1.7e^{-0.2t}$ Implied by e.g., $h = 2.3 - 1.7e^{-0}$ or Allow 0.6, 0.6 m, or 60 cm and isw after a correct height. Allow $\frac{3}{5}$ The M mark may be implied by A1. Links rate of change to gradient and differentiates $h = 2.3 - 1.7e^{-0.2t}$ to $k = 4$. Accept, e.g., $-0.2 \times -1.7e^{-0.2t}$ Must be seen in (b). Substitutes $t = 4$ into $k = e^{-0.2t}$, $k \neq -1.7$ and calculates its value. Fully correct. Requires • sight of $\left\{\frac{dh}{dt} = \right\} 0.34e^{-0.2t}$ o.e., e.g., $\left\{\frac{dh}{dt} = \right\} \frac{17}{50}e^{-0.2t}$ or $\left\{\frac{dh}{dt} = \right\}$ • changing to awrt 15.3 cm {per year}. Substituting $t = 4$ into $h = 2.3 - 1.7e^{-0.2t}$ gives $h = 1.536$ scores M0dM0	$e^{-0.2t}, k \neq -1$	

Question	Scheme	Marks	AOs
4 (a)	Attempts to use $h^2 = at + b$ with either $t = 2, h = 2.6$ or $t = 10, h = 5.1$	M1	3.1b
	Correct equations $\frac{2a+b=6.76}{10a+b=26.01}$	A1	1.1b
	Solves simultaneously to find values for <i>a</i> and <i>b</i>	dM1	1.1b
	$h^2 = 2.41t + 1.95$ cao	A1	3.3
		(4)	
(b)	Substitutes $t = 20$ into their $h^2 = 2.41t + 1.95$ and finds h or h^2 Or substitutes $h = 7$ into their $h^2 = 2.41t + 1.95$ and finds t	M1	3.4
	Compares the model with the true values and concludes "good model" with a minimal reason E.g. I Finds $h = 7.08 \text{ (m)}$ and states that it is a good model as 7.08 (m) is close to 7 (m) E.g II Finds $t = 19.5$ years and states that the model is accurate as 19.5 (years) ≈ 20 (years)	A1	3.5a
		(2)	
			(6 marks

(a)

M1: For translating the problem into mathematics. Attempts to use the given equation o.e. with either of the pieces of information to form one correct equation.

Award for unsimplified equations as well, such as $2.6^2 = 2a + b$ or $2.6 = \sqrt{2a + b}$

A1: Two correct (and different) equations which may be unsimplified

- dM1: Solves simultaneously to find values for *a* and *b*. It is dependent upon the previous M Don't be too concerned with the process here as calculators may be used.
 - Score if values of *a* and *b* are reached from a pair of simultaneous equations
- A1: Establishes **the full equation of the model** with values of *a* and *b* given to **exactly** 3sf. Award if seen in either (a) or (b). It is not scored for the values of *a* and *b*.

Allow either $h^2 = 2.41t + 1.95$ or $h = \sqrt{2.41t + 1.95}$

If they go on to square root each term from $h^2 = 2.41t + 1.95$ then it is A0. E.g. h = 1.55t + 1.40

.....

Special case for candidates who mistakenly use h = at + b

For 2.6 = 2a + b, $5.1 = 10a + b \implies h = 0.3125t + 1.975$ or h = 0.313t + 1.98

can score M1 correct equations with attempt to solve and A1 for either correct answer shown above. These are the only marks available to them for a maximum mark of 1100 00

.....

(b)

M1: A full and valid attempt to

either substitute t = 20 into their $h^2 = 2.41t + 1.95$ o.e. and find a value for h or h^2

or substitute h = 7 into their $h^2 = 2.41t + 1.95$ o.e. and find a value for t

(to enable the candidate to compare real life data with that of the model.)

The equation of the model must be of the correct form, either $h^2 = at + b$ or $h = \sqrt{at + b}$

used appropriately to enable the comparison to be made.

In cases with no working you will need to check the calculation

A1: Compares their h=7.08m to 7m o.e using h^2 or their t=19.5 years to 20 years and makes valid conclusion with reason.

For this mark you require

- a statement that it is a "good" or "accurate' ' model or similar wording
- a reason such as "the values are close", "the values are similar" or "the predicted values are within 5% of the true values."
- a model with equation $h^2 = a t + b$ o.e. where a = awrt 2.4 and $b \in [1.9, 2.0]$
- correct calculations

Condone a statement like ' the model is pretty accurate as it predicted 7.08m and the actual value is 7m'

Do not allow incorrect statements such as the model is incorrect as it does not give 7 metres.

Do not allow just "the model gives an underestimate of the true value."

Do not allow 'bad' or 'poor' model